

JUNTAS ESTÁTICAS

DFL 106

DISEÑO

El modelo **DFL 106** es una junta de sección circular, también llamada junta tórica. Se emplea para garantizar la estanqueidad de piezas mecanizadas en aplicaciones estáticas en medios líquidos y gaseosos. En ciertos casos, puede utilizarse como elemento de estanqueidad dinámico en movimientos axiales, rotativos u oscilantes.

La junta tórica se puede mecanizar a medida o bien, según dimensiones normalizadas. Por su geometría, la junta tórica puede trabajar por su diámetro exterior o puede hacerlo por su diámetro interior.

- Aplicaciones estáticas y dinámicas (a muy baja velocidad).
- Piezas a medida o bajo norma.
- Solución económica.

La junta **DFL 106** puede mecanizarse en poliuretano y en elastómero. Véase apartado de materiales.

INFORMACIÓN TÉCNICA

MATERIALES RECOMENDADOS

Material	Dureza Shore	Temperatura de servicio	Observaciones
EPDM	85 A	-45 °C +130 °C	Recomendado para aplicaciones de agua caliente y vapor. Certificado FDA.
NBR	85 A	-30 °C +110 °C	Caucho nitrilo adecuado para ambientes limpios. Certificado FDA.
H-NBR	85 A	-20 °C +150 °C	Elastómero con la mayor resistencia al desgaste. Certificado FDA.
FPM	82 A	-20 °C +200 °C	Fluorelastómero para fluidos químicamente agresivos o a alta temperatura.
VMQ	85 A	-60 °C +200 °C	Resistente a bajas temperaturas. Certificado FDA.
AFLAS	85 A	-5 °C +200 °C	Alta resistencia química. Puede trabajar con vapor.
HPU Soft	90 A	-20 °C +110 °C	Poliuretano de baja dureza y resistencia a la abrasión.
HPU o C-HPU	95 A	-20 °C +115 °C	Poliuretano resistente a la abrasión. Material con certificación FDA.
SL-PU	96 A	-20 °C +110 °C	Poliuretano de gran resistencia a la abrasión. Bajo coeficiente de fricción.
LT-PU ⁺	96 A	-55 °C +110 °C	Poliuretano con excelente rendimiento a baja temperatura.

Hay disponibilidad de más formulaciones de poliuretano y de elastómeros, bajo petición.

CAMPO DE APLICACIÓN

- Velocidad: 0,1 m/s
- Presión: hasta 40 MPa (400 bar) con aro de apoyo
- Temperatura: según material escogido
- Para diámetros interiores de 4 mm ≤ Ø ≤ 595 mm (otros diámetros, a consultar)

SERVICIOS

- Maquinaria móvil pesada
- Maquinaria agrícola
- Sector automóvil
- Cilindros hidráulicos
- Sector naval
- Sellos mecánicos
- ...

⇒ Neumática

Midráulica

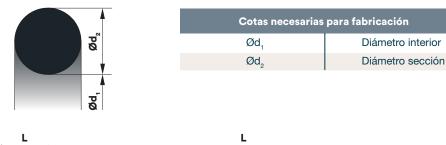
Hidráulica Ligera

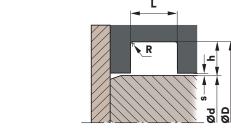
Hidráulica Media

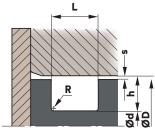
Hidráulica Pesada

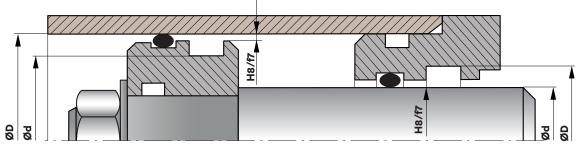
DFL 106

MONTAJE


Montaje Elástico


Cuando se cumple la relación \emptyset d / h > 6, entonces se recomienda un montaje por deformación de la pieza.


Montaje Partido


Si se verifica la relación \emptyset d / h \le 6, entonces se recomienda un alojamiento de dos piezas puesto que la junta no se podría deformar adecuadamente.

INSTALACIÓN

RANURAS DE EXTRUSIÓN

A fin de evitar la extrusión de la pieza, para todos los tamaños de junta, se recomienda una ranura de extrusión "s" equivalente a un ajuste ISO f7 / H8.

En el **catálogo de Juntas Tóricas** se publican tablas detalladas de los alojamientos recomendados según:

- a) el tipo de sellado de la junta tórica (axial o radial)
- b) la geometría del alojamiento (rectangular, triangular o trapezoidal)
- c) condiciones de trabajo (estáticas o dinámicas)

ACABADOS SUPERFICIALES Y TOLERANCIAS

Acabado superficial									
	Está	tica	Dinámica						
Rugosidad	R _{máx}	R_{a}	R _{máx}	R _a					
Superficie antagonista	< 3,2 μm	< 0,6 µm	< 3,2 µm	< 0,6 µm					
Fondo de la ranura	< 16,0 µm	< 4,0 µm	< 10,0 µm	< 2,5 µm					
Flancos de la ranura	< 16,0 µm	< 4,0 µm	< 10,0 µm	< 2,5 µm					

Deformación radial									
	Estática		Dinámica						
Ød	ØD	L	Ød	ØD	L				
h11	H11	0,2	h9	H9	0,2				