

Del diseño a la fabricación FICHA TÉCNICA

JUNTAS DE PISTÓN

DK 142

JUNTA DE BAJA FRICCIÓN Y DE DOBLE EFECTO

DISEÑO

El modelo DK 142 es una junta de baja fricción de doble efecto, para cilindros de posicionamiento en hidráulica ligera y en neumática. Se constituye por un anillo de deslizamiento energizado con una junta tórica DFL 106. La sección del anillo es mucho más pequeña que la de la junta tórica (d_a) porque su función es evitar el giro de la misma en la ranura. El anillo de deslizamiento tiene un coeficiente de fricción tan bajo que elimina el problema del movimiento a tirones del vástago (efecto Stick-slip).

- Sustitución de juntas tóricas.
- Pieza exenta del efecto Stick-slip.
- La junta tórica queda inmovilizada.

El anillo de deslizamiento puede mecanizarse en poliuretano y en diversas formulaciones de PTFE. Véase apartado de materiales.

INFORMACIÓN TÉCNICA

MATERIALES RECOMENDADOS

Material anillo	Dureza Shore	Observaciones
C-HPU	57 D	Poliuretano no conductor de gran resistencia a la abrasión, para -20 °C+115 °C y con certificación FDA.
F3 (40 % bronce) / F6 (46 % bronce)	65 D	Resistencia a la abrasión. Bajo coeficiente de fricción. Material conductor.
F2 (15 % fibra de vidrio / 5 % MoS_2)	58 D	Resistencia a la extrusión. Bajo coeficiente de fricción. Material no conductor.
F11 (< 25 % fibra de vidrio)	60 D	Elevada resistencia a la presión. No utilizar sobre metales blandos. Material no conductor. Certificaciones FDA y CE.
F4 (< 25 % carbón de coque)	62 D	Recomendado para aceites hidráulicos en base agua. Material conductor.
F12 (< 15 % PEEK)	58 D	Elevada resistencia al desgaste. Industria alimentaria. Material conductor. Certificaciones FDA y CE.
F13 (< 20 % Ferrita / Magnetita)	58 D	Elevada resistencia al desgaste. Material detectable por campo magnético, por rayos X o sistemas de detección visual. Certificaciones FDA y CE.
F17 (Carga mineral)	58 D	Resistencia a la abrasión del mismo orden que F3, pero no tiene carga de bronce y por lo tanto no degrada el aceite hidráulico.

Hay disponibilidad de otras formulaciones de PTFE y poliuretano, según sean las condiciones de trabajo. Los materiales más habituales para las juntas tóricas son NBR (-20 °C ≤ T ≤ +110 °C) y FPM (-20 °C ≤ T ≤ +200 °C). Otros elastómeros, bajo petición.

CAMPO DE APLICACIÓN

- Velocidad ≤ 15 m/s (≤ 0,5 m/s para C-HPU)
- Temperatura: según material escogido
- Presión: hasta 35 MPa (350 bar)
- Para alojamientos de 10 mm \leq ØD \leq 580 mm (otros diámetros, a consultar)

SERVICIOS

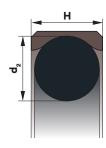
- Cilindros de posicionamiento
- Maquinaria móvil ligera
- Maquinaria de inyección

Hidráulica

Hidráulica Ligera

Hidráulica Media

Hidráulica Pesada



MONTAJE

DK 142

En primer lugar, se sitúa la junta tórica en el alojamiento. Seguidamente se desliza el anillo de PTFE sobre el pistón hasta situarlo justo encima de la junta tórica. Para facilitar la inserción del anillo de fricción también puede emplearse un casquillo cónico y un mandril de expansión. El montaje finaliza con la calibración del anillo de fricción. Véase la sección "Montaje por deformación".

INSTALACIÓN

Cotas necesarias para fabricación		
ØD	Diámetro de la camisa	
Ød	Diámetro interior del alojamiento	
Н	Altura de la pieza	
L	Altura del alojamiento	

R	2,<0,2	L L	Cantos	redondead	os
		M			20°
٤		R			c -
QØ .					

Alojamientos recomendados				
ØD	d ₂	h	L	R
10 < 25	1,78	1,45	2,4	0,4
25 < 50	2,62	2,25	3,6	0,4
50 < 125	3,53	3,10	4,8	0,6
125 ≤ 580	5,33	4,70	7,1	0,8

Longitud del chaflán C				
ØD	10 < 25	25 < 50	50 < 125	125 ≤ 580
С	2,0	3,0	4,0	6,0

RANURAS DE EXTRUSIÓN

Ranura de extrusión radial máxima				
ØD	2 MPa	10 MPa	20 MPa	35 MPa
10 < 25	0,10	0,10	0,08	0,05
25 < 50	0,15	0,15	0,10	0,07
50 < 125	0,25	0,20	0,15	0,08
125 ≤ 580	0,35	0,25	0,20	0,10

Ranura de extrusión: valores para formulaciones de PTFE con cargas. Otros materiales, a consultar.

ACABADOS SUPERFICIALES Y TOLERANCIAS

Acabado superficial				
Rugosidad	R _{máx}	R_{a}		
Superficie del cilindro	< 2,0 μm	0,05 - 0,20 μm		
Fondo de la ranura	< 6,3 μm	< 1,6 μm		
Flancos de la ranura	< 15 μm	< 3 μm		

Tolerancias recomendadas			
Ød	ØD	L	
h9	H9	+0,2	