

JUNTAS DE PISTÓN

DK 222

JUNTA DE DOBLE EFECTO

DISEÑO

El perfil **DK 222** es una junta compacta de doble efecto para servicios en hidráulica móvil pesada.

Consiste en un anillo de deslizamiento, confinado por unos aros de apoyo (**DST 111**) en el alojamiento, que se energiza con un perfil de elastómero.

- El anillo de deslizamiento no puede entregirarse.
- El anillo de deslizamiento no puede extruir.
- Diseño compacto.

El anillo de deslizamiento puede mecanizarse en diversas formulaciones de poliuretano. Véase apartado de materiales.

INFORMACIÓN TÉCNICA

MATERIALES RECOMENDADOS

Material	Dureza Shore	Temperatura de servicio	Observaciones
HPU o C-HPU	95 A	-20 °C+115 °C	Poliuretano resistente a la abrasión. Material con certificación FDA.
PUBL	95 A	-20 °C+115 °C	Poliuretano resistente a la abrasión. Material con certificación FDA.
SL-PU	96 A	-20 °C+110 °C	Poliuretano de gran resistencia a la abrasión. Bajo coeficiente de fricción.
LT-PU+	96 A	-55 °C+110 °C	Poliuretano con excelente rendimiento a baja temperatura.
HPU 55 D	55 D	-20 °C+115 °C	Poliuretano de alta dureza y buen rendimiento a alta temperatura.

Hay disponibilidad de otras formulaciones de poliuretano, según sean las condiciones de trabajo. Los materiales más habituales del perfil energizante son NBR (-20 °C \leq T \leq +110 °C), FPM (-20 °C \leq T \leq +200 °C) y T-NBR (-50 °C \leq T \leq +110 °C) para bajas temperaturas. Otros elastómeros, bajo petición. Se recomienda utilizar aros de apoyo de POM o PA.

CAMPO DE APLICACIÓN

- Velocidad ≤ 1,0 m/s
- Temperatura: según material escogido
- Presión: hasta 40 MPa (400 bar)
- Para camisas de 20 mm ≤ ØD ≤ 580 mm (otros diámetros, a consultar)

SERVICIOS

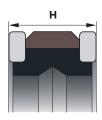
- Hidráulica móvil pesada
- Maquinaria agrícola
- Plumas y grúas
- Cilindros
- Prensas
- ...

Hidráulica Ligera

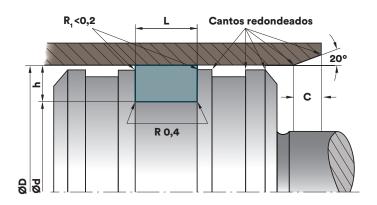
Hidráulica Pesada

DK 222 JUNTA DE DOBLE EFECTO

MONTAJE


En primer lugar, se sitúa el perfil de elastómero en el alojamiento. Seguidamente se coloca uno de los aros de apoyo y se desliza el anillo de poliuretano sobre el pistón (previamente lubricado) hasta situarlo justo encima de la junta energizante, tocando al aro de apoyo. A continuación se instala el 2º aro de apoyo.

El perfil de elastómero puede dilatarse hasta un 30 % mientras que el anillo de poliuretano no debe


deformarse más del 20 %. En caso contrario, existe el riesgo que la deformación pueda ser permanente. Para facilitar la dilatación de la pieza, se puede sumergir la misma en un baño de aceite a 80 °C.

Puede emplearse un casquillo cónico y un mandril de expansión que ayuden en la inserción del anillo de fricción. Véase la sección "Montaje por deformación".

INSTALACIÓN

Cotas necesarias para fabricación		
ØD	Diámetro de la camisa	
Ød	Diámetro interior del alojamiento	
Н	Altura de la pieza	
L	Altura del alojamiento	

Alojamientos recomendados					
ØD	Ød	L	С		
20 < 50	D - 10	12,5	4,0		
50 < 80	D - 15	20,0	5,0		
80 < 150	D - 20	25,0	6,0		
150 < 400	D - 25	32,0	8,5		
400 ≤ 580	D - 30	36,0	10,0		

RANURAS DE EXTRUSIÓN

Ranura de extrusión radial máxima				
ØD	S			
20 < 50	0,40			
50 < 80	0,40			
80 < 150	0,40			
150 < 400	0,40			
400 ≤ 580	0,40			

Ranura de extrusión: valores para formulaciones de poliuretano. Otros materiales, a consultar.

ACABADOS SUPERFICIALES Y TOLERANCIAS

Acabado superficial				
Rugosidad	R _{máx}	$R_{\rm a}$		
Superficie del cilindro	< 2,5 μm	0,05 - 0,20 μm		
Fondo de la ranura	< 6,3 μm	< 1,6 μm		
Flancos de la ranura	< 15 μm	< 3 μm		

Tolerancias recomendadas				
Ød	ØD	L		
h9	H9	+0.2		