
MERKEL OMEGAT OMS-S

Merkel Omegat OMS-S is a two-piece seal set for sealing piston rods, consisting of a PTFE profile ring and an elastomer profile ring as a pre-stress element.

Application

- Specially designed for heavy duty, large size hydraulic cylinders, e. g. HAGC cylinders in steel works
- Seal set for tough applications
- Suitable for large sealing gaps

Material

Material

Nitrile rubber

PTFE Profilring

Material	Designation	Color
PTFE-glass-fiber- MoS2 compound	PTFE GM201	light gray
Elastomer profile ring		

Designation

NBR

Other material combinations available on request.

VALUE TO THE CUSTOMER

- Very high stability under pressure
- High torsional safety
- Very good extrusion safety
- High resistance to abrasion
- Low friction, stick-slip free
- High contact pressure due to the elastomer profile ring

FEATURES AND BENEFITS

Operating conditions

Material	PTFE GM 201/NBR
Hydraulic oils, HL, HLP	−30 +100 °C
HFA fluids	+5 +60 °C
HFB fluids	+5 +60 °C
HFC fluids	−30 +60 °C
HFD fluids	-
Water	+5 +100 °C
HETG (rape-seed oil)	−30 +80 °C
HEES (synth. ester)	−30 +80 °C
HEPG (glycol)	−30 +60 °C
Mineral greases	−30 +100 °C
Pressure	40 MPa
Sliding speed	5 m/s

The figures given are maximum values and must not be applied simultaneously.

Surface finish

Peak-to-valley heights	Ra	R _{max}
Sliding surface	0,05 0,3 μm	≤2,5 μm
Groove base	≤1,6 μm	≤6,3 μm
Groove sides	≤3,0 μm	≤15,0 μm

Material content M_r > 50 % to max. 90 %, with cut depth c = $R_z/2$ and reference line $C_{\rm ref}$ = 0 %

The long-time behavior of a sealing element and its dependability against early failures are crucially influenced by the quality of the counterface.

A precise description and assessment of the surface is thus indispensable. Based on recent findings, we recommend supplementing the above definition of surface finish for the sliding surface by the characteristics detailed in the table below. With these new characteristics derived from the material content, the hitherto merely general description of the material content is significantly improved, not least in regard to the abrasiveness of the surface. Please also consult our technical manual.

Surface finish of the sliding surfaces

Characteristic value	Limit		
R _a	>0,05 μm <0,30 μm		
R _{max}	<2,5 μm		
R _{pkx}	<0,5 μm		
R _{pk}	<0,5 μm		
R _k	>0,25 μm <0,7 μm		
R _{vk}	>0,2 μm <0,65 μm		
R _{vkx}	>0,2 μm <2,0 μm		

The limit values listed in the table do not currently apply for ceramic or semi-ceramic counterfaces. Please also consult our technical manual.

Gap dimension

Decisive for the functionality of the seal is the largest extrusion gap on the low pressure side of the seal during operation. The maximum permissible extrusion gap with a one-sided position of the piston rod is significantly determined by the maximum operating pressure and the temperature-dependent dimensional stability of the seal material. Please also consult our technical manual.

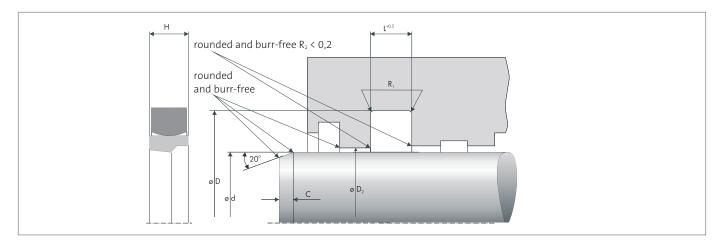
Profile dimension	[mm]	Max. permissible gap dimension [mm]			
L	Profile	16 MPa	26 MPa	32 MPa	40 MPa
12,5	12,5	0,75	0,65	0,55	0,5
15	15	0,75	0,65	0,55	0,5
17,5	17,5	0,75	0,65	0,55	0,5
20	20	0,8	0,7	0,6	0,55

FEATURES AND BENEFITS

Tolerances

Diameter D [mm]	Tolerance
<500	H8
≥500	H7

The dimension d_2 is determined by factoring in the maximum permissible extrusion gap, the tolerances, the guide clearance, the deflection of the guide under load, and the pipe expansion. The tolerance for the diameter d and D2 is specified in connection with the gap dimension calculation. In Typical hydraulic applications up to a nominal dimension of 1.000 mm, the tolerance fields f7 and f8 or H7 and H8 are usually chosen


Installation diagram

Design notes

Gap dimension might vary for special applications e.g. HAGC cylinder. Further details on request. Please note our general design remarks in our technical manual.

Installation & assembly

When fitting the Omegat OMS-S the elastomer profile ring is first placed in the housing groove, then the profile ring is deformed to a kidney shape and sprung into place. During this process it is to be ensured no sharp kinks are produced in the PTFE profile ring and that the sealing edge is correctly arranged in relation to the direction of the pressure. The entire fitting operation is only allowed to be performed over rounded edges.

www.fst.com

